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Weighted Doubling Measures with Remotely Constant Weights
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Abstract. In this work, the authors define a new class of weight functions for which its associated class of
weighted measures is doubling. Moreover, all weight functions of weighted doubling measures are limit
functions of this class of weighted functions with uniformly bounded doubling constant. One particular
implication is that all weight functions for weighted doubling measures are equivalent to semicontinuous
functions.

1. Introduction

Doubling properties involves two closely related concepts: doubling spaces and doubling measures.
It is well known that a complete metric space is doubling if and only if it admits a doubling measure[5]
(see also [3]). In fact, a doubling space always admits infinitely many doubling measures. For example,
Moschini and Tesei [6] proved that the measure dµ = |x|λdx is doubling on Rn whenever λ > −n. Their
work was based on the work of Grigor’yan and Salof-Coste[2] who gave necessary and sufficient conditions
for weighted measures to be doubling in case of radially weight functions. A natural question is to ask
whether it is possible to classify weighted doubling measures or to find an equivalent condition for which
a weighted measure is doubling. In this work, the authors study a class of weight functions which
are quotient of functions with polynomial growth in the asymptotically normal Z-direction (see Definition
Theorem 3.1) and doubling measures. It can be shown that weighted measures with this type of weight
functions are doubling (see Theorem Theorem 3.2) provided that the set Z satisfies the skew condition.
Moreover, all weight functions of weighted doubling measures are limits of this type of weight functions
(see Proposition Theorem 3.3) with the uniformly bounded doubling constant (Theorem Theorem 3.10). As
a result, the author can conclude that all weight functions of weight doubling measures are equivalent to
semi-continuous weight functions (see Theorem Theorem 3.6).

Recently, Wen et al.[1] proved that every d-homogeneous measure on an Ahlfors d-regular space is mutu-
ally absolutely continuous with respect to its Ahlfors d-regular measure. As a result, every d-homogeneous
measure on an Ahlfors d-regular space are mutually absolutely continuous. Since every d-homogeneous
measure is absolutely continuous with respect to an Ahlfors d-regular measure, it is natural to ask the
following: if a doubling measure is absolutely continuous with respect to another doubling measure, then
are they actually mutually absolutely continuous? The answer to this question is affirmative (see Theorem
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Theorem 3.6). Note also that the above result by Wen et al.[1] had also been proved by Sjödin[8] a decade
earlier and both are generalization of Jonsson[4]. Of course, these works are different in details but these
points will not be specified here.

2. Preliminaries

In this work, a space means a geodesic space, i.e., a complete metric space for which there exists a path
connecting any pair of points with length exactly equal to the distance between its endpoints. An open ball
centered at x ∈ X with radius r ≥ 0 will be denoted by B(x, r). Also, a measure means a non-zero σ-finite
Borel measure on a space.

Definition 2.1. A measure ν on a space (X, ρ) is said to be doubling on a familyF of balls in (X, ρ) with a doubling
constant D if for any B(x, r) ∈ F , ν(B(x, r)) ≤ Dν(B(x, r

2 )). A measure ν is doubling if it is doubling on the family
of all balls. In this case, ν is called a doubling measure.

Two important families of balls considered in this work are the families of anchored balls and remote
balls. The family of Z-anchored balls is the family of balls centered in Z and the family of Z-remote balls
with parameter ε ∈ (0, 1) is the family of all balls B(x, r) with r ≤ ερ(x,Z).

Since we only consider geodesic spaces, any doubling measure is homogeneous. Here a measure ν is
α-homogeneous if there is a constant C > 0 such that

ν(B(x, λr)) ≤ Cλαν(B(x, r)

for all x ∈ X and r > 0. Moreover, any doubling measure has the following well-known properties (see e.g.
[7] for their proofs).

Proposition 2.2. Assume that a measure ν is doubling with a doubling constant D. For any x, y ∈ X and any
0 < s ≤ r,

ν(B(x, r))
ν(B(y, s))

≤ D
(

r + ρ(x, y)
s

)α
(1)

where α = log2 D.

Proposition 2.3. Assume that a measure ν is doubling with a doubling constant D. For any x ∈ X and any 0 < s ≤ r
such that B(x, r) , X,

ν(B(x, r))
ν(B(x, s))

≥ d
( r

s

)β
. (2)

where d =
(
1 + D−1

)−1
and β = log3

(
1 + D−1

)
.

Another property related to the doubling property is the volume comparison condition.

Definition 2.4. Fixed a closed subset Z of a geodesic space (X, ρ). A measure ν on X is said to satisfy the volume
comparison condition with respect to Z and remote parameter ε ∈ (0, 1), and with constant V > 0 if for any z ∈ Z
and x ∈ X with ρ = ρ(x, z) = ρ(x,Z) > 0, we have ν(B(z, r)) ≤ Vν(B(x, εr/4).

It follows that any doubling measure with doubling constant D > 0 satisfies volume comparison
condition on with respect to any closed subset with the constant V = D4ε−α. Moreover, the following holds.

Proposition 2.5 ([2, Lemma 4.4]). Fixed a closed subset Z of a geodesic space (X, ρ). Assume that a measure ν on X
satisfies the volume comparison condition with constant V. If ν on X is doubling with a doubling constant D > 0 on
the family of Z-anchored balls and Z-remote balls with remote parameter ε ∈ (0, 1), then ν is doubling with a doubling
constant D2(D + V).
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Note that the above theorem is stated for manifolds in [2] but its proof does not rely on any manifold
structure so it can be trivially ported to a geodesic space. Also, the doubling constant was not stated in [2,
Lemma 4.4] but it can be computed directly from the proof.

Also, the assumption that ν is doubling on Z-anchored balls in Proposition Theorem 2.5 can be dropped
if the set Z is fully accessible[2, Proposition 4.7]. In this work, however, we will consider a weaker condition
called λ-skew condition.

Definition 2.6. Fixed λ ∈ (0, 1], a closed subset Z of a geodesic space (X, ρ) is said to satisfy λ-skew condition if for
any z ∈ Z and r > 0, the set S(z, r) = Sλ(z, r) = {x ∈ X | λr ≤ ρ(x, z) ≤ ρ(x,Z) ≤ r} is nonempty. If λ = 1, then the
set Z is said to be fully accessible.

3. Results

First, lets define functions which have polynomial growth in the asymptotically Z-normal direction.
Henceforth, denote

C(z) = Cδ(z) = ∪r≥0Sδ(z, r) = {x ∈ X | δρ(x, z) ≤ ρ(x,Z)}.

Definition 3.1. Let (X, ρ) be a geodesic space, Z ⊆ X be a closed set. Fix δ ∈ (0, 1) and α ≥ β. A measurable function
f : X → [0,∞) is said to have (α, β)-polynomial growth in the (δ-asymptotically) Z-normal direction if there is a
constant c ≥ 1 such that

1
c

(
ρ(x,Z)
ρ(y,Z)

)β
≤

f (x)
f (y)
≤ c

(
ρ(x,Z)
ρ(y,Z)

)α
for all x, y ∈ Cδ(z), z ∈ Z, for with ρ(y, z) ≤ ρ(x, z).

Clearly, the family of functions which are polynomial growth in the Z-normal direction is closed under
finite product, maximization, and minimization. Moreover, the functions x 7→ ρ(x,Z)α, α ≥ 0, belongs
to this family. It follows that any function which is (α, β)-polynomial growth in the Z-normal direction is
equivalent to a function of the form x 7→ ρ(x,Z)β f (x) where f is (α−β, 0)-polynomial growth in the Z-normal
direction.

If h is a polynomial growth function in the Z-normal direction, then h is Z-remotely constant in the follow-
ing sense: there is a constant CR > 0 depends only on θ ∈ (0, 1) such that supy∈B(x,r) h(y) ≤ CR infy∈B(x,r) h(y)for
all x ∈ X−Z and r ≤ θd(x,Z). This implies that the weighted measure dνh = hdν is doubling on Z-remote
balls with C−1

R h(x)ν(B(x, r)) ≤ νh(B(x, r)) ≤ CRh(x)ν(B(x, r)) for all x ∈ X−Z and r ≤ θd(x,Z).
To prove that νh is doubling for anchored balls, Z need to satisfy the λ-skew condition. Under this

condition, there is a constant CA > 0 depends only on ε ∈ (0, 1) such that C−1
A h(x)ν(B(x, εr/4)) ≤ νh(B(z, r))

whenever x ∈ Sλ(z, r). If we can show that Ch(x)ν(B(x, εr/4)) ≥ νh(B(z, r)) for some constant C > 0, then
not only νh is doubling for anchored balls, it must also satisfy the volume comparison condition directly
implying the doubling preperty of νh. Particularly, we have the following theorem.

Theorem 3.2. Let (X, ρ) be a geodesic space, ν is a doubling measure on X, Z ⊆ X be a closed ν-null set satisfying
λ-skew condition, and f : X → [0,∞) be (α, 0)-polynomial growth δ-asymptotically in the Z-normal direction with
λ ≥ δ. Denote h(x) =

f (x)
ν(B(x,δρ(x,Z))) for all x ∈ X−Z. Then the weighted measure dνh = hdν is doubling.

Proof. Note that h also have polynomial growth δ-asymptotically in the Z-normal direction. Therefore, it
remains to prove that there is a constant C > 0 such that Ch(x)ν(B(x, εr/4)) ≥ νh(B(z, r)) whenever x ∈ Sλ(z, r).
By doubling property of ν, this is equivalent to show that there is a constant C > 0 such that C f (x) ≥ νh(B(z, r))
whenever x ∈ Sλ(z, r). However, this is follows from the fact that there is a constant c > 0 for which f (x)

f (y) ≥ c
for all x, y ∈ Cδ(z), z ∈ Z with ρ(y, z) ≤ ρ(x, z).
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The essential ingredient in proving the above theorem is the fact that there is a constant C > 0 for which
C−1h(x)ν(B(x, εr/4)) ≤ νh(B(z, r)) ≤ Ch(x)ν(B(x, εr/4)) whenever x ∈ Sλ(z, r). Clearly, any function h satisfying
this must have polynomial growth in the Z-normal direction. Next, we will show that any weight function
of a weighted doubling measure is a limit of this type of functions.

Henceforth, ν and ν̃ are doubling measures on a space (X, ρ) with doubling constants D and D̃, respec-
tively, and Z ⊆ X is nonempty and closed with ν(Z) = ν̃(Z) = 0. Also, define dνκ = hκdν where

hκ(x) =
ν̃(B(x, κρ(x,Z))
ν(B(x, κρ(x,Z))

when x ∈ X − Z and hκ(x) = 0 when x ∈ Z. Note that νκ is absolutely continuous with respect to ν, so the
value of hκ on Z is actually unimportant.

If ν̃ is absolutely continuous with respect to ν with the Radon-Nikodym derivative h = dν̃
dν . Then hκ → h

ν-a.e. as well as locally in L1 when κ → 0. This is the Lebesgue’s differentiation Theorem[3, Theorem 1.8
and Theorem 2.7]. This directly implies the following.

Proposition 3.3. If ν̃ is absolutely continuous with respect to ν, then

lim
κ→0

∫
φdνκ =

∫
φdν̃

for any φ ∈ L∞(X, ν) ∩ L1(X, ν).

Next, we will investigate some basic properties of measures νκ when κ is small. To derive precise
estimates, the proof will be given in full details.

Lemma 3.4. For any κ ∈ (0, 1/4],

sup
y∈B(x,κρ(x,Z))

hκ(y) ≤ D6D̃6 inf
y∈B(x,κρ(x,Z))

hκ(y) (3)

for all x ∈ X.

Proof. Let x ∈ X and r = κρ(x,Z). For any y ∈ B(x, r), (1 − κ)ρ(x,Z) ≤ ρ(y,Z) ≤ (1 + κ)ρ(x,Z). It follows that

ν(B(y, κρ(y,Z)) ≤ ν(B(y,
κ

1 − κ
ρ(y,Z))

≤ D
( κ

1−κρ(y,Z) + ρ(x, y)
κρ(x,Z)

)log2 D

ν(B(x, κρ(x,Z))

≤ D
( 2

1 − κ

)log2 D

ν(B(x, κρ(x,Z))

≤ D3ν(B(x, κρ(x,Z))

and

ν(B(x, κρ(x,Z)) ≤ ν(B(x, κ(1 + κ)ρ(x,Z))

≤ D
(
κ(1 + κ)ρ(x,Z) + ρ(x, y)

κρ(y,Z)

)log2 D

ν(B(y, κρ(y,Z))

≤ D
(2 + κ

1 − κ

)log2 D

ν(B(y, κρ(y,Z))

≤ D3ν(B(y, κρ(y,Z))
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Therefore,
D−3ν(B(y, κρ(y,Z)) ≤ ν(B(x, κρ(x,Z)) ≤ D3ν(B(y, κρ(y,Z)).

Similarly,
D̃−3ν̃(B(y, κρ(y,Z)) ≤ ν̃(B(x, κρ(x,Z)) ≤ D̃3ν̃(B(y, κρ(y,Z))

This means D−3D̃−3hκ(x) ≤ hκ(y) ≤ D3D̃3hκ(x) yielding the result.

Corollary 3.5. If ν̃ is absolutely continuous with respect to ν, then there are closed sets h0 and h∞ such that
h0 = {h = 0} and h∞ = {h = ∞} ν-a.e.

Proof. Pick z ∈ X such that ν({z}) = 0 and let Z = {z}. Let

f (x) = lim inf
κ→0

inf
y∈B(x,κρ(x,Z))

hκ(y),

f (x) = lim sup
κ→0

inf
y∈B(x,κρ(x,Z))

hκ(y),

1(x) = lim inf
κ→0

sup
y∈B(x,κρ(x,Z))

hκ(y),

1(x) = lim sup
κ→0

sup
y∈B(x,κρ(x,Z))

hκ(y).

Then f ≤ 1 ≤ D6D̃6 f , and f ≤ 1 ≤ D6D̃6 f outside Z. Moreover, f ≤ h ≤ 1 ν-a.e. It follows that

{ f = 0} = { f = 0} = {1 = 0} = {1 = 0} and { f = ∞} = { f = ∞} = {1 = ∞} = {1 = ∞}. Set A = { f = 0} and
B = { f = ∞}. Then A = {h = 0} and B = {h = ∞} ν-a.e.

Let xn ∈ A be such that xn → x , z. For any ε > 0 and n ∈ N, there is a κn > 0 such that
supy∈B(xn,κρ(xn,Z) hκ(y) < ε for all κ ≤ κn. This follows from the fact that 1(xn) = 0 for all n ∈ N. For
any κ > 0, choose n0 ∈ N large enough so that ρ(xn, x) < κ

2ρ(x,Z) for all n ≥ n0. Thus, infy∈B(x,κρ(x,Z)) hκ(y) ≤
supy∈B(xn0 ,min( κ2 ,κn0 )ρ(xn0 ,Z)) hκ(y) < ε. Let κ→ 0 follows by ε→ 0, then f (x) = 0, i.e., x ∈ A. Let h0 be the closure
of A. Since h0 ⊆ A∪{z}, h0 = {h = 0} ν-a.e. Similarly, define h∞ to be the closure of B, then h∞ ⊆ B∪{z} and
h∞ = {h = ∞} ν-a.e.

Particularly, this implies that all doubling measures absolutely continuous with respect to ν are equiva-
lent to the ones having lower and upper semicontinuous Radon-Nikodym derivatives.

Theorem 3.6. For any doubling measure ν̃ absolutely continuous with respect to doubling measure ν with dν̃
dν = h,

there exist a lower semi-continuous function h and an upper semi-continuous h such that

(a) h and h are continuous at the same points,

(b) h(x) = h(x) whenever h is continuous at x,

(c) h ≤ h ≤ D6D̃6h, and

(d) D−6D̃−6h ≤ h ≤ D6D̃6h.

Particularly, ν̃ and ν are mutually absolutely continuous.

Proof. In this proof, Z be a closed set in which Z = {h = 0}∪{h = ∞} ν-a.e. Let

f (x) = lim sup
κ→0

inf
y∈B(x,κρ(x,Z))

hκ(y) and

1(x) = lim inf
κ→0

sup
y∈B(x,κρ(x,Z))

hκ(y).
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Then f ≤ h ≤ 1 ν-a.e. Moreover, 1 ≤ D6D̃6 f which implies 0 < f , 1 < ∞ on X−Z.
To see that f is lower semi-continuous, let x ∈ X and r > 0 be such that f (x) > r. Then for any κ > 0 such

that infy∈B(x,κρ(x,Z)) hκ(y) > r. Pick η = κ
2+κ . Then for any w ∈ B(x, ηρ(x,Z)) and any y ∈ B(w, κρ(w,Z)/2),

ρ(y, x) ≤
κ
2
ρ(w,Z) + ρ(w, x)

≤
κ
2

(ρ(w, x) + ρ(x,Z)) + ρ(w, x)

≤

((
κ
2

+ 1
)
η +

κ
2

)
ρ(x,Z)

≤ κρ(x,Z)

It follows that infy∈B(w,κρ(x,Z)/2) hκ/2(y) > r. This proves that f (w) > r for all w ∈ B(x, ηρ(x,Z)) immediately
implying that f is lower semi-continuous. The upper semi-continuity of 1 can be proven similarly.

Now, let h = f and h(x) = lim
r→0

supy∈B(x,r) f (y). Combining with the fact that h ≤ 1 ≤ D6D̃6 f , (a)-(d)

immediately follows.

Lastly, we will show that the measures νκ all have the same doubling constant. The proof is based on
several lemmas given below.

Lemma 3.7. For any κ ∈ (0, 1/4], the measure νκ is doubling with doubling constant D7D̃6 on Z-remote balls with
remote parameter κ. Moreover, for all x ∈ X,

D−3D̃−3ν̃(B(x, κρ(x,Z))) ≤ νκ(B(x, κρ(x,Z))) ≤ D3D̃3ν̃(B(x, κρ(x,Z))). (4)

Proof. Let x ∈ X and 0 ≤ r ≤ κρ(x,Z). For any y ∈ B(x, r),

D−3D̃−3hκ(x) ≤ hκ(y) ≤ D3D̃3hκ(x)

which implies D−3D̃−3hκ(x)ν(B(x, r)) ≤ νκ(B(x, r)) ≤ D3D̃3hκ(x)ν(B(x, r)). Hence,

νκ(B(x, r)) ≤ D4D̃3hκ(x)ν(B(x,
1
2

r)) ≤ D7D̃6νκ(B(x,
1
2

r)).

Setting r = κρ(x,Z) also implies Equation (4).

Lemma 3.8. For any κ ∈ (0, 1/4], any x ∈ X, and any r ≥ κρ(x,Z),

D−17D̃−17ν̃(B(x, r)) ≤ νκ(B(x, r)) ≤ D3D̃7ν̃(B(x, r)). (5)

Proof. By Whitney covering theorem, there is a countable familyW of disjoint balls such that
(a) ∪B(y,s)∈WB(y, 3s) = X − Z, and (b) s = 1

3κρ(y,Z) for all B(y, s) ∈ W.
Let x ∈ X and r ≥ κρ(x,Z). Let B = {B(y, s) ∈ W : B(y, 3s)∩B(x, r) , ∅}. For any B(y, s) ∈ B,

s =
1
3
κρ(y,Z) ≤

1
3
κ
(
ρ(y, x) + ρ(x,Z)

)
≤

1
3
κ
(
r + 3s + ρ(x,Z)

)
yielding (1 − κ) s ≤

(
1
3κ + 1

3

)
r and so s ≤

(
1+κ

3(1−κ)

)
r ≤ 5r

9 which implies B(y, s) ⊆ B(x, 4r). Therefore,

νκ(B(x, r)) ≤

∑
B(y,s)∈B

νκ(B(y, 3s))

≤ D3D̃5
∑

B(y,s)∈B

ν̃(B(y, s))

≤ D3D̃7ν̃(B(x, r))
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while

ν̃(B(x, 4r)) ≤ D̃2ν̃(∪B(y,s)∈BB(y, 3s))

≤ D3D̃5
∑

B(y,s)∈B

νκ(B(y, 3s))

≤ D17D̃17
∑

B(y,s)∈B

νκ(B(y, s))

≤ D17D̃17νκ(B(x, 4r)).

Hence, D−17D̃−17ν̃(B(x, r)) ≤ νκ(B(x, r)) ≤ D3D̃7ν̃(B(x, r)) whenever r ≥ 4κρ(x,Z). For r ≤ 4κρ(x,Z),

ν̃(B(x, r)) ≤ D̃2ν̃(B(x, κρ(x,Z)))
≤ D3D̃5νκ(B(x, κρ(x,Z)))
≤ D17D̃17νκ(B(x, r)).

Lemma 3.9. For any κ ∈ (0, 1/4], z ∈ Z, and r > 0,

D−17D̃−16ν̃(B(z, r)) ≤ νκ(B(z, r)) ≤ D3D̃6ν̃(B(z, r)).

Proof. By Whitney covering theorem, there is a countable familyW of disjoint balls such that
(a) ∪B(x,s)∈WB(x, 3s) = X − Z, and (b) s = 1

3κρ(x,Z) for all B(x, s) ∈ W. .
Let z ∈ Z and r > 0. Denote B = {B(x, s) ∈ W : B(x, 3s)∩B(z, r) , ∅}. Clearly, B(z, r) ⊆ ∪B(x,s)∈BB(x, 3s).

For any B(x, s) ∈ B,
ρ(x,Z) ≤ κρ(x,Z) + r

implying B(x, s) ⊆ B(z, 2r). Using Lemma Theorem 3.7, we have

νκ(B(z, r)) ≤ D3D̃3
∑

B(x,s)∈B

ν̃(B(x, 3s))

≤ D3D̃5
∑

B(x,s)∈B

ν̃(B(x, s))

≤ D3D̃6ν̃(B(z, r))

while

νκ(B(z, 2r)) ≥

∑
B(x,s)∈B

νκ(B(x, s))

≥ D−14D̃−12
∑

B(x,s)∈B

νκ(B(x, 3s))

≥ D−17D̃−15
∑

B(x,s)∈B

ν̃(B(x, 3s))

≥ D−17D̃−16ν̃(B(z, 2r)).

Theorem 3.10. For any κ ∈ (0, 1/4], the measure νκ is doubling with constant D20D̃25.
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Proof. Let x ∈ X and r > 0. If x ∈ Z, then

µκ(B(x, r)) ≤ D3D̃6ν̃(B(x, r)) ≤ D3D̃7ν̃(B(x, r/2)) ≤ D20D̃23νκ(B(x, r/2)).

If x < Z and r ≥ κρ(x,Z),

µκ(B(x, r)) ≤ D3D̃7ν̃(B(x, r)) ≤ D3D̃8ν̃(B(x, r/2)) ≤ D20D̃25νκ(B(x, r/2)).

Lastly, if x < Z and r ≤ κρ(x,Z), µκ(B(x, r)) ≤ D7D̃6νκ(B(x, r/2)).

4. Conclusion and Discussion

It is well-known that doubling property is closely related to the Harnack inequality and the Gaussian
behavior of heat kernel. Precisely, the parabolic Harnack inequlity is equivalent to the Gaussian behavior
of heat kernel and both are equivalent to doubling property and the Poincaré inequality. Grigor’yan and
Salof-Coste[2] studied whether these properties remain invariant under the change of measures. In their
work, the weight functions must have polynomial growth in the asymptotically normal {z}-direction. In
this work, the authors show that all weighted doubling measures are limits of weighted doubling measures
of this form. Therefore, it is interesting to see whether the result of Grigor’yan and Salof-Coste[2] could
be extended to any weighted doubling measures. In the authors’ opinion, this should be possible since
most of the proof relied only on the doubling constant and the Poincaré constant. All these require further
investigation, however.
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